DataTechnology

ทีมวิเคราะห์ข้อมูลฉบับ MIT เป็นแบบไหนกัน?

MIT แนะนำวิธีสร้างทีม Data สุดเจ๋งในบริษัท | Skooldio Blog - ทีมวิเคราะห์ข้อมูลฉบับ MIT เป็นแบบไหนกัน?

เพราะธุรกิจทุกวันนี้ตัดสินที่ใครจะนำ Data มาวิเคราะห์ได้มีประสิทธิภาพกว่ากัน แต่ปัญหาคือหลาย ๆ องค์กรยังไม่รู้เลยว่าถ้าจะตั้งทีม Data ในบริษัทต้องทำอย่างไร? และควรมีใครบ้าง?

ทาง Skooldio จึงขอหยิบเอาคำแนะนำจาก MIT Sloan School of Management สถาบันด้านนวัตกรรมระดับต้น ๆ ของโลกมาฝากกัน ว่าทีม Data สุดปัง ต้องประกอบไปด้วยอะไรบ้าง?

ทีม Data ตามแบบฉบับ MIT ประกอบไปด้วย 5 ส่วนหลัก ๆ ดังนี้

1. วิศวกรข้อมูล (Data Engineer)

วิศวกรข้อมูล (Data Engineer) | Skooldio Blog - ทีมวิเคราะห์ข้อมูลฉบับ MIT เป็นแบบไหนกัน?
Designed by Chevanon / Freepik

ผู้สรรสร้าง ดูแล และพัฒนาระบบการรวบรวม คัดกรอง รวมถึงจัดการข้อมูลให้มีประสิทธิภาพ จากนั้นจึงนำข้อมูลที่ผ่านการคัดกรองแล้ว ส่งให้ Data Scientist ไปวิเคราะห์ข้อมูลเพื่อต่อยอดโอกาสทางธุรกิจต่อไป

2. นักวิทยาศาสตร์ข้อมูล (Data Scientist)

ถ้า Data Engineer เป็นผู้ดูแลระบบข้อมูล Data Scientist ก็คือคนที่เล่นกับข้อมูล ซึ่ง Data Scientist จะนำข้อมูลที่ผ่านการกรองมาวิเคราะห์หา Insight เพื่อประกอบการตัดสินใจต่าง ๆ ในองค์กร

3. นักแปลข้อมูล (Data Translator)

นักแปลข้อมูล (Data Translator) | Skooldio Blog - ทีมวิเคราะห์ข้อมูลฉบับ MIT เป็นแบบไหนกัน?
Designed by rawpixel.com / Freepik

เปรียบเหมือนสะพานเชื่อมระหว่างทีม Data กับ ทีม Business จะเป็นคนที่เข้าใจการทำงานของระบบข้อมูลตั้งแต่ต้นจนถึงได้ Insight ออกมา แล้วนำสิ่งเหล่านั้นมานำเสนอในภาษาที่นักธุรกิจเข้าใจ (เทคนิคนำเสนอข้อมูล)

4. ตำแหน่งใหม่ ๆ (New Roles)

ในปัจจุบันตำแหน่งใหม่ ๆ เริ่มถูกออกแบบมาเพื่อเสริมประสิทธิภาพการทำงานในทีมมากขึ้น ไม่ว่าจะเป็น Knowledge Engineer ผู้สร้างระบบ AI ที่สามารถตัดสินใจได้คล้ายกับมนุษย์ หรือ Onthologist ผู้มองภาพรวมให้กับบริษัท โดยการนำข้อมูลจากการวิเคราะห์กับข้อมูลอื่น ๆ มาประกอบการตัดสินใจให้องค์กร ก็ถูกสร้างขึ้นมาใหม่เช่นกัน

5. ผู้นำ (Leader)

ผู้นำ (Leader) | Skooldio Blog - ทีมวิเคราะห์ข้อมูลฉบับ MIT เป็นแบบไหนกัน?
Designed by Racool_studio / Freepik

ทีมที่ดี จำเป็นต้องมีผู้นำทีมเสมอ จากการสำรวจบริษัทในกลุ่ม Fortune 1000 โดย NewVantage Partners พบว่า 57% ของบริษัทที่สำรวจมีการตั้งตำแหน่งใหม่ เช่น Chief Data Officer (CDO) หรือ Chief Analytics Officer (CAO) ดูแล แต่ในทางกลับกัน ก็มีอีกหลายองค์กรนำทีม Data ไปอยู่ในการดูแลของหัวหน้าฝ่ายต่างๆ ที่มีอยู่แล้ว เช่น Chief Information Officer (CIO) Chief Operating Officer (COO) หรือ IT Executive ทั้งนี้ขึ้นอยู่กับการมอบหมายความรับผิดชอบของแต่ละองค์กรด้วย

ท้ายที่สุด การทำงานอย่างมีประสิทธิภาพของทีม Data สุดปังจะต้องมีการลำเลียงข้อมูลต่อกันมาเป็นทอด ๆ กว่าข้อมูลจะเดินทางจากต้นจนจบนั้น ส่วนประกอบหลักที่สำคัญอย่างหนึ่งเลยก็คือ Data Pipeline ซึ่งเป็นตัวลำเลียงข้อมูลดิบมาผ่านการกรอง และเก็บรักษา เพื่อที่แต่ละฝ่ายจะได้นำไปใช้ต่อยอดมูลค่าให้กับองค์กรต่อไปได้


ถ้าอยากรู้เคล็ดลับการจัดการข้อมูลให้มีประสิทธิภาพ ให้เหมาะสมกับทีมวิเคราะห์ข้อมูลสุดปัง มาเจอกันได้ที่คอร์ส Automating Your Data Pipelines with Apache Airflow คอร์สแรกในเมืองไทย สอนโดยผู้เชี่ยวชาญตัวจริงในวงการ Data ไทย – ดร.กานต์ อุ่ยวิรัช

Automating Your Data Pipelines with Apache Airflow: คอร์สแรกในเมืองไทย สอนโดยผู้เชี่ยวชาญตัวจริงในวงการ Data ไทย - ดร.กานต์ อุ่ยวิรัช | Skooldio Blog - ทีมวิเคราะห์ข้อมูลฉบับ MIT เป็นแบบไหนกัน?

You may also like

Skooldio Blog - 4 เทคนิคในปัจจุบันที่ใช้ A.I. และ Machine learning เพื่อการแพทย์ | Featured Image
Technology

4 เทคนิคในปัจจุบันที่ใช้ A.I. และ Machine learning เพื่อการแพทย์

เป็นที่รู้กันว่า Artificial Intelligence (A.I.)  หรือ ปัญญาประดิษฐ์ กลายเป็นหนึ่งในเครื่องมือที่ช่วยให้มนุษย์ใช้ชีวิตได้อย่างสะดวกสบายมากขึ้น ไม่ว่าจะในด้านของทางธุรกิจ หรือทางการเกษตร แต่ที่พลาดไม่ได้เลยคือ A.I. สามารถช่วยพัฒนาศักยภาพทางการแพทย์ได้เป็นอย่างดี โดยแบ่งออกเป็น 4 ตัวอย่าง ...

More in:Data

Skooldio blog 3 ข้อดี ทำไมคนเป็นหมอ ควรเขียนโค้ดเป็น | Header Technology

3 ข้อดี ทำไมคนเป็นหมอ ควรเขียนโค้ดเป็น?

แพทยศาสตร์ ยังคงเป็นหนึ่งในสายการเรียนยอดฮิตในหมู่นักเรียนสายวิทย์ในปัจจุบัน ถึงแม้ว่าเทคโนโลยี จะมาสร้างความเปลี่ยนแปลงในโลกนี้อย่างมากมาย แต่อาชีพหมอ ก็ยังเป็นอาชีพที่ขาดไม่ได้ และเป็นอาชีพที่หลายๆ คนหมายปอง เมื่อเห็นคำว่า “โปรแกรมเมอร์” หรือการ “เขียนโค้ด” น้องๆ หลายคน คงนึกถึงการเป็นวิศวกร ...
Data-Driven พารุ่งหรือพาร่วง? Data

Data-Driven พารุ่งหรือพาร่วง?

เกือบทุกเพจการตลาดในไทย(หรือในโลกก็ตาม) ต้องเคยทำคอนเทนต์เกี่ยวกับช่วงเวลาที่ดีที่สุดที่ควรโพสต์บนแต่ละ Social Media และคอนเทนต์เหล่านี้มักจะได้รับความนิยมสูงมาก เพราะใครๆ ก็พากันกดแชร์ กด Retweet กด Tag เพื่อนมาดู ด้วยความรู้สึกตื่นเต้นราวกับได้เครื่องรางของคลัง ที่จะช่วยให้โพสต์ของพวกเขาไม่กริบอีกต่อไป ผมเชื่อว่าทุกเพจมีเจตนาที่ดีที่จะนำเสนอข้อมูลที่น่าสนใจ ...
subquery คืออะไร Data

Subquery เทคนิคง่ายๆ ช่วย query สบายกว่าที่เคย

SQL Subqueries Subquery คืออะไร? Subquery เหมือนกับการ Query ในภาษา SQL หรือคือการเขียน SELECT Statement เพื่อทำการดึงข้อมูลในคอลัมน์หรือค่าในคอลัมน์จากตารางหรือฐานข้อมูลที่เราต้องการ เพื่อนำไปใช้ประโยชน์ต่อไป แต่ ...
Data

Data Visualization คืออะไร? แล้วทำไม Google Data Studio ถึงตอบโจทย์กับธุรกิจยุคใหม่

ในยุค Big Data ที่มีข้อมูลดิบอยู่มหาศาล องค์กรหรือบริษัทแแทบทุกที่ต่างก็อยากเก็บข้อมูลให้มากที่สุด หลายๆ คนชอบคิดว่ายิ่งเก็บข้อมูลได้เยอะเท่าไหร่ ยิ่งดีเท่านั้น เพราะน่าจะช่วยเพิ่มโอกาสในการใช้ข้อมูลตัดสินใจทางธุรกิจได้ถูกต้องและแม่นยำยิ่งขึ้น แต่จริงๆ แล้วการเก็บข้อมูลยิ่งเยอะเท่าไหร่ ไม่ได้แปลว่ายิ่งดีขึ้นเสมอไป และนอกเหนือจากการเก็บข้อมูลแล้ว คนในองค์กรหรือบริษัทยังจะต้องสามารถในการเข้าถึงข้อมูล ผ่านเครื่องมือที่เหมาะสม ...

Comments are closed.